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Summary. A method for representing inactive groups, i.e. spectator groups, in 
a molecular system by an effective potential is presented. The matrix elements for 
the spectator's short-range Hartree-Fock potential is stored in an intermediate AO 
basis, from which it can be transferred into the user basis for the active part of the 
molecular system. The longer-range of the potential is transferred via a (distrib- 
uted) multipole expansion. The method is illustrated for the NH 3. X (X = NH3, 
HzO, HF) complexes: binding energies could be reproduced to within 5% by 
employing the effective NH 3 potential (whereby the lone pair was included in the 
active system), the entire NH3"HF potential curve with a depth of 50 kJ/mol is 
reproduced within 2 kJ/mol if various intermediate basis sets are chosen. Technical 
details are discussed; the effective potential can directly be introduced in CI 
calculations. 
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1 Introduction 

In many chemical reactions or other processes of importance in larger molecular 
systems a certain locally well-defined part of the system is not directly involved in 
the process under consideration and thus plays only the role of a "spectator group". 
Examples are methyl or larger groups in organic molecules, large portions of 
molecules involved in hydrogen-bonding or considerable parts of metal-ligand 
complexes. The spectator description indicates that this part of the molecule 
exhibits its influence on the process under consideration only by its electrostatic 
potential, but does not change its own character by polarization or relaxation. 
Hence such a definition suggests the idea to replace the spectator groups by an 
effective potential, thereby reducing the computational expenditure in the descrip- 
tion of the system considerably. Effective potentials are in wide use for the 
representation of inner shells of electrons (for example see 1-1, 2, 3]); such potentials 
are spherically symmetrical around the nucleus and thus relatively easy to describe. 
Potentials of spectator groups generally do not have such properties but are 
anisotropic, a feature which complicates their description considerably. There have 
been various attempts so far in the literature for a simple description of spectator 
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groups. For example the effective potentials derived by Huzinaga and coworkers 
I-4-7] to simulate Hartree-Fock potentials have been successfully employed for the 
theoretical description of spherical ions in a crystal field. Ohta and coworkers 1-8] 
have approximated the Coulomb potential of the spectator by a fit in a basis of 
analytical functions, whereas the nonlocal exchange potential of the spectator is 
simulated by projection operators containing adjustable parameters. Those projec- 
tion operators are also needed to prevent a reoccupation of the already doubly 
occupied orbitals of the spectator. Jortner et al. I-9] have developed a pseudopoten- 
tial for H: O consisting of local Coulomb, polarization, exclusion, and exchange 
contributions used to simulate the interaction of the water-molecule with an electron. 

In the present work we present an alternative way for the representation of such 
spectator group potentials. Our goal is to represent the effective potentials in form 
of a matrix in an intermediate atomic orbital basis. This approach has the 
advantage that difficulties which arise in the fitting procedure for non-spherical 
potentials are circumvented (for this reason our approach is different from the 
effective potentials for spherical ions described in Refs. I-4-6] which include an 
analytical fit of the Coulomb-potential). The nonlocal exchange potential together 
with the Coulomb-potential is represented by the matrix in the intermediate basis 
in our method whereas Ohta et al. have to treat the exchange potential separately 
because this potential is not representable as a fit in a basis of local functions. By 
the term intermediate AO basis we want to indicate, that the effective potential is 
stored in an intermediate basis, but that it has to be transferred before application 
in a certain molecule into the AO-basis of the total system under consideration, the 
"user basis". This final user basis requires in certain instances that some AO 
functions of the spectator be directly included, in particular if a certain portion of 
the spectator cannot be considered entirely inactive in the process (i.e. if some 
polarization is induced in the spectator by the process). This flexibility accounts for 
the reality, namely that spectator groups do not remain entirely inactive if pro- 
cesses occur in neighbouring parts of the system. 

In order to transfer the effective potential from its storage in the intermediate 
basis into an arbitrary user basis, this intermediate basis must certainly be very 
flexible. Thus there is the practical question about the size of the intermediate basis, 
whereby its size should be easily manageable in actual calculations. We will 
therefore investigate in the present work, whether a single intermediate basis is 
adequate for the transfer of the entire anisotropic spectator potential or whether 
several intermediate basis sets are to be preferred for certain areas of space. There is 
the further question, whether the long-range part of the potential is transformed 
best in the intermediate basis or whether a multipole expansion is more effective for 
the description of the long-range portion of the potential. And finally, there is the 
question to which extent such effective spectator potentials can be employed in 
computations which account for electron correlation, i.e. in standard CI-type 
calculations. The present paper will present the results of such a study. In particular 
the study will show how the hydrogen-bonded complexes NH 3" X (X = HF, Ha O, 
NH3) can be described with an effective NH 3 potential, maintaining thereby the 
direct treatment of an active part, i.e. the lone pair of NH3, in order to allow for 
a certain amount of polarization of the NH 3 molecule by the approaching Partner 
X. In particular we will compare the NH3.HF potential curve with an all-electron 
calculation. 

The question, whether the spectator potential is not only adequate for the 
description of the complexes, but also for evaluating other properties, will be the 
subject of a following paper. 
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2 Theory 

2.1 Construction of the effective potential for spectator groups 

A typical example for the interaction of spectator groups with the other part 
of the molecule is indicated in Fig. (1). The spectator involves the N H  3 group 
with the exception of the nitrogen lone-pair, which together with the partner X, 
forms the so-called active part of the molecule. The lone-pair is included in 
the active region to allow for a certain degree of polarization of N H  3 due to 
the bonding of partner X. In addition to the electrons an equivalent number of 
nuclear charges is also attributed to the spectator. This number can be either 
the total nuclear charge of the spectator or its charge can be distributed between 
the spectator and the electrons. In the present example NH3.X there are five 
nuclear charges which belong to the genuine spectator and two charges which 
must be incorporated into the active part. In analogy to conventional atomic 
pseudo-potentials the five charges compensate the "inner electrons" and the two 
positive charges compensate the valence electrons, i.e. in this case the NH3 
lone-pairs. 

The spectator is described by a closed-shell determinant: 

~p  = I ~pl(1)~q~l(2)fl~Oz(3)c~o2(4)fl""" q~N,p(N- 1)~q~Nsp(N)fll 

N: number of electrons of the spectator 

(1) 

N~p: number of orbitals of the spectator 

This closed-sheU Ansatz for its wavefunction is consistent with the conception 
of an inactive spectator in a reaction process, which in most cases will possess 
only doubly filled electron shells. The orbitals q~ in this determinant are 
considered to be localized orbitals (LMO) in all our considerations. They can be 
viewed as core orbitals, bonding electron pairs or lone pairs, just as they are 
conceived in qualitative chemical terms. Computationally the LMO  are obtained 
by a unitary transformation of the canonical Har t ree-Fock MO's, where the 
coefficients of the transformation matrix are determined such that the LMO's are 
preferentially localized in a small region of space. In the present work the LMO are 
generated by the simple Boys localization procedure [10] applied to the SCF 
solution for the isolated spectator group; in some instances it might also be 
adequate to obtain the LMO by a transformation of the solution of the entire 
molecule. 

× +Y 

Fig. 1. Illustration of the method with the 
complexes NH3'X as an example. The 
active part of the system consists of the 
lone pair (drawn in dashed lines) and of the 
binding partner X. By the circle those AO's 
of the intermediate basis set are 
symbolized which facilitate the transfer of 
the NH 3 potential to partner X. Outside of 
an area with a radius of about 3.0 ,~ the 
potential is transferred by a multipole 
expansion 
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The Hamiltonian for the total system including the effective potential and the 
active part of the molecule can be written as: 

H~p = + - -  + V~N 
i=1 i = i  i<jFU 

+ g~P+ 2 ( 2 J ~ - / ~ ) +  2 e~l~0,(i)><tp,(i)l 
i = 1  c t = l  ~ t= l  

Details of the derivation 1-11] as well as examples for the use in effective core 
potentials can be found in the literature 1,2, 3, 12]. The first three terms refer to the 
n-electrons of the active part of the molecule representing the kinetic energy 
operator t, the potential of the nuclei in the active part and the operator for the 
electron-electron interaction. The fourth term is the repulsion of the nuclear 
charges of the molecular-active region. The contribution of the effective potential of 
the spectator contains two terms: 

Nsp 

gr + E (2J  - =: 
~t=l 

Nsp 
e~] g0~(i)> < ~p~(i)] =: LS, p 

0 t = l  

in the standard notation for the coulomb J~ and exchange/~ operators of the 
spectator. 

J~f(1)= f dv2go~,(2)q~,(2) r-~2f(1) 

K~f(1)= f dv2q~,(2)q~:,(1) l f(2) 

cp, MO of spectator 

The term V~p is the Hartree-Fock potential of the spectator corresponding to the 
closed-shell determinant of Eq. (1). The second term LSsp is the level-shift operator, 
i.e. a sum of projection operators on the orbitals go~ multiplied by a level-shift 
parameter e~ to be choosen freely. The operator LSsp has the function of keeping the 
wavefunction of the active part ~kac orthogonal to the spectator orbitals ~0~ as 
exactly as possible, since the orbitals ~0~ are already doubly occupied in the 
~hsp wavefunction. 

In the ideal case of canonical closed-shell spectator orbitals the level-shift 
operator just shifts the spectator orbitals cp~ to higher energies by an amount 
e~ without changing the closed-shell orbitals of the active part at all. The open-shell 
orbitals of the active part are not independent of the ~ parameters even in this ideal 
case since the open-shell Fock operator and the closed shell Fock operator of the 
RHF (restricted Hartree-Fock) method differ. The optimal e~ parameters for the 
determination of the open-shell orbitals of the active part are the orbital energies 
multiplied by minus two, as was pointed out by HSjer and Chung 1,13]. In this 
article they clarified the function of the level-shift operator as a part of the effective 
potential in case of inner-shell electrons. In our method the spectator orbitals 
generally are localized orbitals rather than canonical orbitals; for this reason all the 
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orbitals of the active part depend on the e, values, and only the closed-shell orbitals 
of the active part reach exact orthogonality to the spectator in the limiting case 
of  , ,  --, ~ .  

The level-shift operator LSsv is only an exact projection operator if the AO basis 
employed for the calculation of the entire system making use of the description of 
the spectator in form of an effective potential is able to fully represent all ~0o. This is 
generally not the case (i.e. the AO's on the spectator which contribute to the ~o, are 
generally not present anymore in the user basis) and thus the results are not entirely 
independent of the level-shift parameters; adequate values for the e~ have therefore 
to be determined empirically by test calculations. It has generally been found in the 
construction of effective potentials that there is a large range of e~ values in which 
the results depend very little on the size of these parameters. If the e~ become too 
small the energy of the total molecule (active part plus spectator, see Sect. 2.2) 
collapses to a value below the eigenvalue of the non-relativistic Hamiltonian 
because the Pauli principle is violated and the wavefunction ~#ac loses its ortho- 
gonality to the orbitals of the spectator. This problem has been discussed from 
various aspects in the literature [11]. 

Since the terms V, v and LSsv modelling the spectator's effective potential are 
one-electron terms (Eq. (2)), their implementation in existing molecular code is 
straightforward: the matrix of the effective potential can simply be added to the 
T and V integrals computed for the active part of the molecule, provided the 
effective potential is evaluated in the AO basis employed for this calculation (user 
basis). The computational advantage of a scheme in which spectator groups are 
treated as effective potentials is obvious: a reduction in the size of the AO basis set 
and in the number of electrons that have to be treated explicitly in the SCF 
calculation and furthermore, an appreciable reduction in the size of the ensuing 
configuration interaction (CI) procedure. 

The problem is the actual representation of the effective potential V~ v and LSsv 
of Eq. (2), which has to be stored in a form independent of its later application. For 
this reason it is represented in this work in a matrix based on a so-called 
intermediate AO basis (IB) [i), [ j)  according to Eq. (2); 

O,',j = i g" + Z (2], - / ( , )  + ~ ~o, (~o, l j)  (2) 
• =i ~=i 

from this AO basis it can then be transferred into the so-called user basis (UB), used 
for the calculation of the entire system to be treated. 

The intermediate AO basis consists of the entire AO basis of the isolated 
spectator plus a large number of additional basis functions in the area in which 
the bonding partner X is to be expected. In order to generate the electronic 
Hartree-Fock potential in the IB, the computation of the density matrix of the 
spectator and the computation of all integrals involving the two electron operator 
I/r,2 over all AO's of the IB is necessary. In order to generate the level shift 
operators and the nuclear potential terms only one-electron integrals in the IB have 
to be evaluated. 

The transfer of the effective potential represented in the IB (Eq. (2)) into the UB 
If), fro) is achieved according to Eq. (3): 

O~a,m= l i g ~v+ L ( 2 f f , - / ~ , ) +  L e, •, ~o, j ( j im)  
i = 1  a = l  ~ t = l  j = l  

(3) 
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or in matrix representation: 

O A = T(SI) - 1OI($I)- 1T t (4) 

OA: effective potential in the user basis 

(S t ) -1: inverse overlap matrix in the intermediate basis 

T: overlap matrix between the user basis and the intermediate basis 

Or: effective potential in the intermediate basis 

where the intermediate basis has the function of an inserted incomplete unit 
operator. The occurrence of the inverse overlap matrix (St) - 1 results from the 
non-orthogonality of the cartesian Gaussian functions which make up the inter- 
mediate as well as the user basis. 

If the spectator group has a different spatial orientation in the final molecule 
that in the situation from which the effective potential has been extracted, the 
cartesian components of the potential matrix in the IB within the same shell 
(i.e. Px, Py, Pz) are reflected in the xy plane if necessary, and then rotated before the 
transfer into the UB is made. In this manner any spatial orientation of the spectator 
relative to the active part of the system can be accounted for, i.e. a final coordinate 
system x, y, z can be defined. 

The quality of the IB requires some further comments. The transfer of the 
effective potential into the UB according to Eq. (3) can be looked upon as 
computing a weighted average of the matrix elements ( i lOlJ)  in which the 
weighting factors are the expansion coefficients ( a  I i ) or ( a  l J) .  In order to obtain 
reliable values for the matrix elements, all AO's of the UB should be expandable in 
linear combinations of the IB with the coefficients ( a l i ) .  In order to guarantee this, 
the IB should be adequate for the representation of the orbitals of the UB in all 
areas in which the partner X is expected to occur, indicated by a circle in Fig. (1). If 
the number of AO's in the IB is way above 100, numerical stability problems may 
occur in the inversion of the overlap matrix (Eq. (4)) because of the non-ortho- 
gonality of the AO's. A possibility to avoid this dilemma would be the usage of 
various IB's defined with respect to different origins in space. A further possibility 
to limit the space in which the IB must transfer the potential is the use of 
a multipole-expansion for the transfer of the effective potential in the long-range 
region of the spectator, also indicated in Fig. 1. 

In case that the relative positioning between spectator and active part of the 
molecule is changed in a study, as necessary in the computation of potential energy 
surfaces, the accuracy of the transfer process for the effective potential must be 
especially high. This aspect will be taken up in Sect. 2.2. 

2.2 Transfer of  the spectators effective potential to the active part 
of  the molecule 

As already outlined in the last section, the effective potential stored in the IB has to 
be transferred into the UB before it can be added to the elements of the Fock 
matrix for the system under consideration. The transfer of the LS~p term of Eq. (2) 
does not cause any difficulties. For  the exact transfer the IB has simply to include 
the AO's of the spectator in which the orbitals ~o, are expanded. In order to achieve 
exact transfer of the second term, V~p of Eq. (2), the exact unit operator, i.e. in 
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practice an arbitrary large intermediate AO basis 1i) ( i[ would have to be inserted 
in Eq. (3). The accuracy in the transfer of V~p from the IB to a matrix element O~m in 
the UB decreases with the angular quantum numbers of 1/), ira), i.e. the effective 
potential can be transferred best to s functions and with greater difficulties or 
smaller accuracy toffunct ions,  for example (higher spherical harmonics have not 
been included in the present work). In essence, with an increasing number of nodal 
planes in the AO of the UB it becomes more difficult to expand this AO with 
sufficient accuracy in terms of the IB. Furthermore, it is also obvious that the 
transfer to diffuse orbitals is better than to compact AO's, for the same reasoning, 
and it is also easier to diagonal terms than to off-diagonal elements. 

The accuracy with which an AO of the UB can be expanded as a linear 
combination of AO's of the IB can be seen from its norm: 

If l i)  approaches a complete basis the positive definite quantity Nz tends toward 
unity. 

Satisfactory accuracy in the transfer of the potential can be expected if the 
Nt for the AO's of the UB are in the order of 0.98 or larger. This requires a very 
flexible IB; of course Nt = 1 can be obtained in the trivial case that the UB is 
a genuine subset of the IB, but such a choice does not allow the generality in the 
effective potential representation which is sought here. 

Experience has shown that the accuracy attempted above cannot be obtained if 
only a single IB is chosen. The best procedure seems to be the usage of several IB's 
(at different origins) combined with a multipole expansion to transfer the long 
range part of the potential. For the latter the general method by Stone [14, 15] 
is chosen. It is a distributed multipole expansion, i.e. the charge density of the 
spectator is divided into various parts and each part is described by a separate 
expansion around a different origin. The highest moment included is the quadru- 
pole moment; the origins are the nuclear centers and the middle of the bonds. The 
matrix element ( I I V~pl m) is then approximated by the multipole potential of the 
spectator. 

The general procedure is shown as follows: for each individual matrix element 
(I  [ V~pl m)  the product of the norms: 

NPl m = 1 i ( i l l )  m 2 j i m ) )  (6) 
' i = 1  \ j = l  

is evaluated. This expression describes the products of the norms Nz and N,, (Eq. 
(6)) of the AO's l l)  and ira) projected into the IB. The IB for which NPg,., is closest 
to 1.0 is then chosen for the transfer of V~p. In case that none of the IB yields a norm 
product which is larger than a given threshold, the multipole expansion is chosen 
for the transfer of the potential. Outside of a certain radius (Fig. 1) the multi- 
pole expansion is selected automatically, since in the outer area the norm product 
is small because of the small numbers of AO's available from the IB in that 
area. 

A further increase in the accuracy of the V~p transfer can be 'obtained if all matrix 
elements, to which V~p is transferred via the IB, are divided by their norm product. 
In this manner the physically non realistic decrease in the magnitude of the matrix 
element could be corrected, which occurs as a result of the reduction in the norm of 
the AO's of the UB to values below 1.0 affected by the insertion of the IB. 
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3 Use  of the effective spectator potentials for the complexes N H  3 • X 

The procedures outlined above are tested for the spectator NH3 bound to various 
partners X = NH3, H2 O and HF, the polarity of which is widely different. By the 
different choice of the partners the flexibility of the spectator potential and its 
representation can be studied. All computations are carried out at the SCF level; 
results of CI calculations employing spectator potentials will be treated in a sub- 
sequent paper. 

3.1 Technical details of  the calculation 

Most computations are performed at the equlibrium structure of the components 
given in Fig. (2). The geometries are taken from Refs. [16-18] optimized in SCF 
calculations. They are slightly modified for the present purpose in order to have 
identical inner coordinates for the NH3 and in order to have a linear arrangement 
of the nuclei N-H-X (X = N, O or F). 

For NH3"HzO and NH3"HF experimentally determined geometries are also 
known [19], [20]; apart from very minor changes in the inner coordinates they are 
the same as those in Fig. (2). The NH3"NH3 complex has been found to prefer the 
linear arrangement (Fig. 2) according to SCF calculations, but a cyclic asymmetric 
structure is found to be the lowest energy according to coupled-pair-functional 
CPF calculations [16]. Since the energy difference between the two structures is 
extremely small (ca. 1 kJ/mol), one cannot determine with certainty which of the 
two is the most stable. Recent measurements by double-resonance infrared spectro- 
scopy [21] show that the NH3 dimer oscillates with high frequency between 
different structures. Hence NH3.NH 3 seems to be a very floppy molecule to which 
a definite structure cannot be assigned. 

The AO basis sets employed for the calculations are the (8s, 5p) basis sets [22] 
[(9s, 5p) for N [23] ] of Huzinaga in the (4s, 2p) contraction (Ref. [22] for O/F and 

AHN:I,01~ 
<HNH:109 ° 

X 8:70,5 ° ~ , , ~  

,q ,~("~ ~ Z 

H H" 3,M+ ~ - -C3 

.•f 
H'~'3N~ < HOH:IO/+'5° ,, A HO :0,96~ / n Y / 

II 0-- 
H~" -~ 3,0~ 

-~Z 

X 
/17y % A HF:0,92~, 

H H'N "' # 2,76 
~Z Fig. 2. Equilibrium geometries employed for the 

complexes NHa'X 
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Table 1. Basis sets for NH3"X 

basis N: Huzinaga (9s/5p) ~ (4s/2p) 
contraction: 6111/41 
0~(d) = 0.864 

basis O: Huzinaga (8s/4p) ~ (4s/2p) 
contraction: 5111/31 
~(d) = 1.2 

basis F: Huzinaga (8s/4p) ~ (4s/2p) 
contraction: 5111/31 
ct(d) = 1.4 

basis H: Huzinaga (4s) --* (2s) 
contraction: 31 
scaled with ~/2 = 2.0 

Ref. [24] for N) with one d-function as indicated in Table 1. The hydrogen basis 
is a (4s) expansion contracted to 2s, scaled by t/2 = 2.0. Hence the basis can be 
described as being of double-zeta quality plus polarization functions on the heavier 
atoms (N, O, F). 

3.2 Relaxation effects & the spectator NHa 

The dissociation energies of the NH3"X systems are computed as the difference of 
the molecular energy at equilibrium and a supermolecule calculation at a distance 
of 100 bohr. Before the effective NH3 spectator potential is generated, it is impor- 
tant to determine whether the entire system NH 3 or possibly only a portion thereof 
can be treated as a spectator. For  this reason conventional SCF calculations are 
made as a reference point and the NH3 system is treated in three variations of the 
so-called 'frozen-orbital' SCF calculations. In such calculations the coefficients of 
some localized molecular orbitals (LMO) of NH3 are held fixed ("frozen") and are 
not subject to the SCF optimization procedure for the remaining orbitals in the 
molecule. The three variants are: 

a) the LMO's  of the donor NH 3 are those of the NHa 'X  equilibrium structure 

b) the LMO's  of the donor  NH 3 are those of the dissociated N H  3.X state, i.e. as in 
the isolated NHa fragment 

c) as (b), but the LMO's  for the lone pair are subject to optimization 

The results of Table 2 show dearly, that variant (a) yields a dissociation energy 
which is much too high, variant (b) a result which is unrealistically low. Variant (c) 
gives a value for the dissociation energy which is close to that of the SCF 
calculations. As a result it is obvious that the lone pair in NH3 cannot be treated as 
spectator but must be incorporated into the active part of the molecule. The 
relaxation in NH3 occurs to more than 80% in its lone pair. Similar observations 
have been made by [8]. All other LMO, namely the three N - H  bonds and the ls 
core can be considered as spectators in the NH3-X  process. 
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Table 2. Dissociation energies (in kJ/mol) of the NH3 "X complexes obtained from various calculations 

NH 3 • HF NH3' H20 NH3" NH3 Type of calculation 

68.3 30.2 13.7 

36.2 20.2 9.5 

48.1 24.9 11.0 

51.7 26.3 11.3 

53.1 27.6 
15.0(3.0) 

all LMO's of NH3, generated at the equilibrium 
of the compound, are held fixed ("frozen") 
all LMO's of NH3, generated for the NH3 frag- 
ment, are held fixed ("frozen") 

lone-pair LMO can relax, only NH-bonds and ls 
are frozen (generated for the free NH3) 

standard SCF, all orbitals optimized 

Ref. [16] SCF-calc. 
Ref. 1-25] experimental 

3.3 Influence of the level shift 

The results of the previous section suggest that the three LMO's  representing the 
N - H  bonds and the ls core of N H  3 can be considered as the spectator part; the 
corresponding nuclear charges are 5.0 at the nitrogen center and 1.0 at each of 
the hydrogen nuclei. The effective spectator potential is generated at the geometry 
of the isolated NH3. 

Two different UB are tested, which have to describe the active part  of the 
NH3.X system, i.e. the fragment as well as the nitrogen lone pair. In the first, 
the full basis of the nitrogen a tom was included in addition to the basis for the 
X fragment; in the second the two most  compact  s functions on nitrogen (generally 
representing the ls electrons) are also deleted so that in essence 2s, 2p and 
a polarization d function are available in the UB for the nitrogen lone pair 
description. In the first the level shifts are different for the Is orbital (a fixed value of 
500.0 Hartree is chosen) and the L M O  of the N H  bonds (which are varied), in the 
second the level shifts are the same for N - H  bonds and ls core for a given 
calculation. Calculations are again carried out for the NH3" X system at equilib- 
rium and for the dissociated conformation (100.0 a.u. separation). The IB in this 
case consists for the sake of simplicity of the N H  3 basis plus the X basis, always 
taken at the equilibrium nuclear geometry. This choice guarantees the exact 
transfer of the effective potential at the equilibrium geometry (the UB is a genuine 
subset of the IB); for the separated fragments the partner X lies far away from the 
area in which the IB acts, so that a transfer of the potential to the AO's of X is not 
possible, but the spectator potential on X is zero anyway at such distances, so that 
at this geometry there is also no error introduced in the transfer of the potential. 

The calculated energies for the bound complexes and the separated fragments 
are displayed in Table 3 for various values of the level shift. It is seen that the 
computed value for the dissociation energy increases slightly in the first UB variant 
(calculation a) for all three compounds when e decreases from 500.0 to 5.0. For  
smaller values of the level shift we observe variational collapse. For  e = 5.0 the 
energies are almost the same as those obtained in an all-electron calculation in 
which the L M O  expansion coefficients for all orbitals with the exception of the lone 
pair are kept fixed at their values of the isolated NH3 (Table 2). Hence the optimal 
level-shift value seems to lie around e = 5.0, and there is a wide range in which the 
results depend very little on e. The level shift for the ls orbital was chosen as 
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Table 3. Influence of the level shift parameter e. Dissociation energies (in 
kJ/mol) obtained for the various NHa'X compounds by employing different 
level shifts e (in a.u.) in the effective NH3 potential 

NH3"HF NHa'H 20 NHa'NH3 e [a.u.] 

a) 45.2 23.9 10.5 500.0 
45.4 24.2 10.5 50.0 
48.1 25.5 11.0 5.0 
23.9 12.1 4.5 2.0 

b) 54.3 28.4 12.6 500.0 
54.9 28.6 12.9 50.0 
57.2 30.2 13.4 5.0 
55.7 29.7 13.4 2.0 
76.1 42.5 20.5 1.0 

In calculation a) the user basis for the active part of the system includes all 
nitrogen AO's; for the ls orbital of N e is always 500.0. In calculation b) only 
valence AO's of nitrogen are included in the user basis. 

e = 500.0, and this high value is adequate since the UB in this variant still includes 
all functions required for the ls expansion. In employing the effective potential 
these compact  nitrogen functions make it possible that all MO's  in the active 
region can in principle form orthogonality nodes to the ls nitrogen shell. By 
increasing e, all these MO's  approach the exact orthogonality to the ls, and the ls 
level shift will not make up any (unphysical) contribution to the total energy nor 
will it deform the MO's  of the active molecular part. 

The second UB (calculation b in Table 3) yields somewhat higher values for the 
dissociation energy than the reference SCF calculation with frozen LMO's.  These 
values are possibly a consequence of a small deformation of the nitrogen lone pair 
due to the level shift operator for the ls orbital. Since in this UB variant the two 
most compact  s-functions (representing the ls shell) are not included, which are 
important  for the description of the orthogonality nodes of the MO's  relative to 
the ls shell, it is conceivable that the ls level shift operator  is not sufficiently 
accurate. 

3.4 Optimizing the transfer of the effective spectator potential into the 
user basis 

In order to allow a good transfer of the spectator potential into the user basis, the 
AO's of the user basis have to be expandable to high accuracy as linear combina- 
tions of functions in the intermediary basis (see Sect. 2.2). High accuracy means in 
this case that the product  of norms (Eq. (6)) is in the order of at least 0.98. A very 
flexible transfer is required for potential surface calculations, i.e. the situation in 
which the influence of the effective potential changes with elongation of bond 
length. This situation requires very high accuracy for the representation of the 
spectator potential in the UB, not only for one geometric arrangement but over the 
entire range of geometrical variables. 
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The sensitivity of the effective potential can be illustrated by the following 
considerations: 

The total energy can be divided into the energy of the spectator, the energy of 
the active part and the interaction energy between spectator and active part (the 
separation of the total energy can be done as it is outlined here provided the 
wavefunctions of spectator ~bsv and active part ~'ac are orthogonal). The energy of 
the spectator is the expectation value of the closed-shell determinant ~sv of Eq. (1), 
note that in the nuclear terms only the charges attributed to the spectator occur. 
The energy of the active part is given by ( ~lac [-~a~[ ~lac ~, whereby/t.c is the operator 
for the isolated active part, i.e. the operator H'ev (Eq. (2)) of the entire system 
(Eq. (2)) without the terms for the effective spectator potential. The inter- 
action energy between spectator and active part has two components, i.e. the 
interactions of the spectator with the electrons of the active part and the inter- 
action with the nuclear charges. The first term is the expectation value 
(~kacl V~v + LS~vl ~ka~). 1 Together with the total energy of the active part it yields 
(~,~[H'ep[tPa~), i.e. the result of an energy calculation employing the effective 
potential. The second part of the spectator-active part interaction can be evaluated 
directly as (~vl g~ ] ~k,v), in which g,c stands for the nuclear charges in the active 
part. This term depends on the geometric arrangement of the active part relative to 
the spectator, and has to be computed at eachpoint of the energy hypersurface in 
addition to the energy expectation value ( ~ac I H'ev] ~ka~ ). The first component of the 
interaction between active part and spectator (~ac [V~p + LS~pl ~ba~) is subject to 
errors due to the transfer of the effective potential via the intermediate basis, 
whereas the second component can be computed exactly. Both components are of 
the magnitude of several atomic units and they almost cancel each other. As 
a consequence, the relative errors in the interaction energy are much larger than in 
the term (~,¢1 V~ v + LS~v I ~lac ) itself. Unfortunately the interaction energy is the 
contribution to the total energy with the largest variations when potential surfaces 
with changes in distance or relative orientation between the active part and the 
spectator are to be calculated. 

As a test of the procedures outlined in Sect. 2.2 for the accurate transfer of the 
effective potential to the partner X, potential energy curves for the dissociation of 
NHa'HF are calculated. Potential curves which are computed using several inter- 
mediate basis sets in combination with a multipole expansion are compared with 
a reference curve with exact transfer of the effective potential. All localized orbitals 
(LMO) of NH 3 except the lone pair and the ls of nitrogen are included in the 
effective potential for NHa (see Sect. 3.2). On the basis of the results from Sect. 3.3 
values of 5.0 a.u. for the N-H bonds are taken for the level shift parameter e~. The 
ls orbital of nitrogen is not included in the effective potential as described in Sect. 2, 
but it is represented by a pseudopotential according to the method of Durand 
and Barthelat I-1] instead; the ls orbital of fluorine is also replaced by such 
a pseudopotential (parameters, see Table 4). Owing to the employment of the 
Durand-Barthelat pseudopotentials the orbitals of the active part (i.e. the lone pair 
of nitrogen and the valence MO's of HF) do not have to form orthogonality nodes 
to the Is core. For this reason the two most compact s functions in the AO basis 

1 The level shift operator LS~v can yield a small contribution to the energy (ff.c [V~v + LS~vl ff.~) since it 
is not an exact projection operator if some AO's of the spectator group are neglected in the user basis 
(see Sect. 3.3). This energy contribution has been found to be small and nearly independent of the 
binding partner X 
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Table 4. ECP-parameters for the description of the Is-core according to the method of Durand and 
Barthelat 1-26] 

ECP:l~o(i~=lci, lrn"le ...... )ll)(ll 
Nitrogen Fluorine 

1 i nl.  z ~i .  z c~. l nl , ,  ~i.  t cl .  z 

0 1 - 2  0.77911 1.09851 - 2  1.26132 1.12060 
0 2 2 0.77911 -0.33854 2 1.26132 -0.98560 
1 1 - 1 4.76414 -0.43676 - 1  8.17605 -0.44625 

sets of N and F can be deleted in the user basis (UB) (AO basis of nitrogen and of 
HF)  without facing problems similar to those described in Sect. 3.3 with the second 
UB. 2 This saving has the great advantage that the very difficult transfer of the 
effective potential to compact  AO's of the partner X (i.e. the H F  molecule) is 
circumvented (see Sect. 2.2). 

All intermediate basis sets consist of a (5s, 3p, ld) AO-basis at the nitrogen a tom 
(see Points 2. and 3. in Table 6) plus a (Is, lp, 4d, 4f) one-center expansion at some 
point on the z axis in variable distance from the nucleus of nitrogen (see Point 1. in 
Table 6 and Fig. 1). The one-center expansion of the first IB lies at the approximate 
location of the hydrogen nucleus of H F  at its equilibrium distance (see Fig. 2). Each 
succeeding IB differs from the preceding one by a shift of the origin of the 
one-center expansion away from NHa;  the magnitude of this shift is 0.264 A for the 
first five IB's and 0.528 A shift for the following IB's. This combined use of several 
IB's guarantees that a one center expansion for the exact transfer of the effective 
potential to partner X is at disposal everywhere in the area which is accessible for 
partner X. At larger distances from the spectator N H  3 the exact transfer of the 
potential is facilitated by a multipole expansion instead. The accuracy of the 
multipole expansion can be judged from the fact that the multipole potentials 
of NH3 and of NH3 without lone pair deviate less than one percent from the 
corresponding exact Har t ree -Fock  potentials at the location of the oxygen a tom in 
the complex N H a ' H 2  O. In calculations with five IB's plus multipole expansion the 
average error in the transfer of the NH3 Har t ree -Fock  potential can be reduced to 
less than 10 -4 Hartree for one matrix element in the user basis (UB). The transfer of 
the potential to AO's of nitrogen, where it has its largest absolute values, is exact 
since the AO's of the UB at the nitrogen a tom (see Table 5) form a genuine subset of 
all IB's (see Table 6). 

In Table 7 the deviation of potential curves for N H a . H F  computed with 
a different number  of IB's from the reference curve is displayed; a different number  
of IB's means that the chain of consecutive one-center expansions terminates at 
different distances from N H  3 on the z axis. The reference curve is calculated with 
exact transfer of the effective potential since at each point of the reaction path the 
full basis of the complex NH3" H F  with the corresponding N - F  distance is used as 

2 The remaining AO's of N and F respectively see Table 5 are modified with respect to the valence AO's 
of N and F respectively from Table 1 since special valence AO basis sets are to be used in conjunction 
with the Durand Barthelat pseudopotentials in order to obtain nodeless valence orbitals 
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Table 5. Valence AO-basis for N and F to be used in conjunction with the ls 
ECP-parameters 

Nitrogen coeff. Fluorine coeff. 
exponent exponent 

Is 86.2442 -0.007458 161.502 -0.007179 
11.026 -0.047907 20.8143 -0.046459 
0.643562 0.554216 1.17289 0.542086 

2s 0.2133 1.0 0.368772 1.0 

lp 11.821 0.043362 20.2556 0.048639 
2.75664 0.227848 4.71088 0.246670 
0.768047 0.509199 1.29071 0.508251 

2p 0.1654 1.0 0.336485 1.0 

ld 0.864 1.0 1.4 1.0 

• The valence AO-basis sets are taken from [26] 
• The exponents of the d-functions and the 2s/2p functions of nitrogen were taken 
from all-electron basis sets of Table 1 (see Sect. 3.1) 

Table 6. Intermediate basis sets for the transfer of the Hartree-Fock 
potential of NH3 without lone pair to the partner X 

1. one-center expansion at the possible locations of partner X (for the 
position of the origins of the expansion see Sect. 3.4) 
AO type* exponents 

s 0.9 
p 0.9 
d 1.728 0.0864 0.432 0.216 
f 2.56 1.28 0.64 0.32 

2. the complete all-electron basis of NH3 at the location of NH3 
3. compact s- and p-functions for nitrogen from Table 1 at the nitrogen 
location of the donor NH3 

* more diffuse s- and p-functions are not necessary since they are already 
included as linear combinations of the cartesian components of the d- and 
f-functions, respectively 

the intermediate  basis set. The threshold for the product  of norms  NPz,  m is given at 
the head of each co lumn in Table  7; if none  of the IB's yields a NP~, m which is larger 
than  the threshold for a certain matr ix  element l, m in the UB, then the potent ia l  is 
transfered via mult ipole  expansion to this matr ix  element l, m (see Sect. 2.2). 

It  is obvious from Table  7 t h a t  the deviat ions from the reference energies 
decrease steadily with increasing n u m b e r  of intermediate  basis sets. For  five IB's 
the observed errors can still be considered small in compar i son  to the b ind ing  
energy of 50 kJ /mol .  This finding is also clear from the inspect ion of the potent ial  
curve computed  with five IB's relative to the reference curve shown in Fig. 3. The 
chain of five IB's ends at a distance of 3.0 A from the ni t rogen atom. This distance 
is somewhat  larger than  the radius beyond  which the mult ipole  expansion is 
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Table 7. Deviations in kJ/mol from the reference potential curve for the dissociation of NH3"HF 

Comparison of the SCF calculation in which the exact transfer of the effective potential is made with 
those, in which the effective potential is transferred using n intermediate basis sets (IB)* 

AN-F(~,)  7 I . B . T N = 0 . 9 5  5I.B. T N = 0 . 9 7  4I.B. T N = 0 . 9 5  4I.B. T N = 0 . 9 8  1I.B. 0.95 

2.5 
2.8 
3.3 
3.8 
5.4 

10.7 
53.0 

1.8 1.1 1.8 1.8 31.8 
1.3 0.8 2.6 3.4 46.2 
0.8 1.8 4.5 3.9 13.1 
0.8 2.4 5.0 2.6 4.7 
0.5 0.5 0.5 0.5 0.5 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 

TN: selection threshold for the product of norms (see Sect. 3.4) 
* All potential curves with n intermediate basis sets lie below the reference curve at all distances N - F  
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Fig. 3. Potential energy curves for the dissociaiton of NH3'HF,  obtained from SCF calculations 
employing an effective potential for NH a . The curve x x x  is obtained for the exact transfer of the effective 
potential into the user basis while the curve ooo results from employing five intermediate bases plus 
multipole expansion for the long-range part and renormalization 

sufficiently accurate (see Sect. 2.2). A certain overlap is necessary, however, in order 
to achieve accurate potential transfer to matrix elements between AO's on different 
atoms as well. This is the case because both AO's of a matrix element have to be 
expanded accurately in the IB if the potential is to be transferred via the IB whereas 
only the location of the product of the two AO's is of importance for the transfer of 
the potential via the multipole expansion. 

The size of the threshold for the product of norms NP~,m also has some 
influence on the magnitude of errors. An optimal choice for NPz,,, is achieved when 
the average errors for the transfer of the potential using the intermediate basis are 
of the same size as the average errors for the transfer of the potential using the 
multipole expansion at the radius of the sphere in which the intermediate basis sets 
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are effective. In order to guarantee the proper transfer of the potential in the 
general case it is necessary to have an adequate density of IB functions in the 
segment of space between the spectator and the possible locations of binding 
partner X. The computational effort implied by this requirement is non-negligible 
but we think that the method is practical also in the general case for the following 
reasons: 

• More economic arrangements and structures of the IB's than those applied in 
this study can be found to achieve a further reduction of the required computa- 
tional effort. 

• The dissociation of hydrogen bonded systems like NH3"X is a very difficult 
testing case since the interaction energy is small and because the inaccuracies in the 
transfer of the spectator potential have only an influence on the energy of the 
bound system but have no effect on the computed energy of the dissociated system 
at all. Very recent results in our laboratory for the isomerization of para-dimethyl- 
benzene to its dewar-form employing effective potentials for the methyl-groups 
indicate that reliable results can be obtained using moderate intermediate basis sets 
if the inaccuracies in the potential have roughly the same effect on the initial state 
and the final state of the process considered and if the energy difference to be 
calculated is not too small. 

4 Conclusions 

The aim of the present study was to develop an effective potential to simplify the 
description of spectator groups in molecular systems treated by ab initio calcu- 
lations. The main problem arises because such effective potentials are generally 
very anisotropic in space and therefore do not allow a representation by simple 
functions. In the present work the effective potential of a spectator was represented 
in form of a matrix in a large intermediate basis set. It was found that in the system 
NH3"X, with X = NH3, H20,  HF the N-H bonds and the ls electron can indeed 
be treated as an effective potential and that only the nitrogen lone pair is important 
in the description of the bonding properties. Binding energies could be reproduced 
to within 5% by employing the effective potential. The influence of the magnitude 
of the level shift is also found not to be critical. 

Problems arise in the determination of potential curves because on one hand 
the intermediate basis set has to be flexible enough to allow an accurate expansion 
of the AO's of the user basis, and on the other hand it cannot exceed a certain size 
because it must be still manageable in calculations. Sample calculations of the 
potential curve for the NH3-HF dissociation show that it is necessary to use 
a number of intermediate basis sets with different origins to achieve a sufficiently 
accurate transfer of the potential. It is also necessary to use a multipole expansion 
for the transfer of the long range components of the NH3 potential to AO's at 
larger distances from NH3, but this can easily be achieved. Employing the inter- 
mediate basis at five origins the NH3"HF potential curve can be reproduced to 
within 2 kJ/mol, whereby the total depths of the well is in the order of 50 kJ/mol. 

If computations on systems in a fixed geometry with several spectators are to be 
performed (i.e. complexes with several ligands or molecules with several substitu- 
ents), it is also possible to circumvent the problem of the transfer of the potential. 
For each spectator the AO basis of the active part of the system plus the AO basis 
of the spectator is taken as intermediate basis set in this case. This procedure 
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guaran tees  an  exact  t ransfer  of  the effective po ten t ia l  and  the full two-e lec t ron  file 
for the comple te  system has never  to be evaluated.  Such a s t ra tegy requires,  
however ,  the genera t ion  of  the effective po ten t i a l  anew for each spec ta to r  in each 
appl ica t ion .  

The  ind ica t ion  is tha t  the  used spec ta to r  po ten t ia l s  might  be quite efficient for 
large and  bu lky  groups;  in such cases the reduc t ion  in c o m p u t a t i o n a l  effort due to 
the reduced  n u m b e r  of e lect rons  in the system employ ing  effective potent ia l s  would  
be sizeable and  the represen ta t ion  of the effective po ten t ia l  in an  in te rmedia te  basis 
as -well as the t ransfer  into the user basis  is no t  expected to require  much  more  
c o m p u t a t i o n a l  expendi tu re  as for smal l  spec ta to r  groups.  

The  present  a p p r o a c h  can be immedia t e ly  t aken  over  to conf igura t ion  interac-  
t ion calculat ions.  This  aspect  will be s tudied in the consecut ive paper ,  in pa r t i cu la r  
to see to wha t  extent  the spec ta to r  po ten t ia l  is able  to character ize  o ther  p roper t ies  
besides energies. 
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